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A model of deterministic surface growth studied by Krug and Spohn, a model 
of the annihilating reaction A + B--, inert studied by Elskens and Frisch, a 
one-dimensional three-color cyclic cellular automaton studied by Fisch, and a 
particular automaton that has the number 184 in the classification of Wolfram 
can be studied via a cellular automaton with stochastic initial data called 
ballistic annihilation. This automaton is defined by the following rules: At time 
t = 0, one particle is put at each integer point of R. To each particle, a velocity 
is assigned in such a way that it may be either + 1 or - 1  with probabilities 1/2, 
independent of the velocities of the other particles. As time goes on, each 
particle moves along R at the velocity assigned to it and annihilates when it 
collides with another particle. In the present paper we compute the distribution 
of this automaton for each time t E ~l. We then use this result to obtain the 
hydrodynamic limit for the surface profile from the model of deterministic 
surface growth mentioned above. We also show the relation of this limit process 
to the process which we call moving local minimum of Brownian motion. The 
latter is the process B ~  n, x �9 R, defined by B rain : =  min{Br; x -  1 ~< y ~< x + 1 } 
for every x �9 R, where Bx, x ~ •, is the standard Brownian motion with B0 = 0. 

KEY WORDS: Cellular automaton; deterministic model of surface growth; 
ballistic annihilation; three-color cyclic cellular automaton; annihilating two- 
species reaction; hydrodynmic limit; moving local minimum of Brownian 
motion. 

1. I N T R O D U C T I O N  

F o r  i t  Z a n d  n ~ N,  le t  X i ( n ) E  { -  1, 0, + 1 } e x p r e s s  t h e  p r e s e n c e  o f  a p a r -  

t icle  a t  s i te  i a n d  t h e  v e l o c i t y  o f  t h i s  p a r t i c l e  a t  t i m e  n; n a m e l y ,  X i ( n ) = 0  
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means that at time n there is no particle at the site i; IXa(n)l = I means that  
at time n a particle occupies this site and then Xi(n) is its velocity. Denote  
X(n) := {X;(n), iEZ} .  Let us introduce the following rule, which relates 
X(n + 1 ) deterministically to X(n): 

(i) f rom time n to time n + 1 each particle which was present in X(n) 
moves in the direction of its velocity along R 

(1.1) 
(ii) if, while moving, a particle collides with another particle, 

then both are annihilated and disappear 

Let (t2, ~ )  denote an abstract  probabil i ty space on which Xi(0), i t  Z, 
take their values such that  

X/(0), i r Z, are i.i.d, r andom variables with P [Xi (0 )  = + 1 ] = 1/2 (1.2) 

The initial distribution (1.2) and the rules (i)-(ii) of  (1.1) imposed for every 
n e N define on g2 the process { X(n), n ~ t~ } which we call ballistic annihila- 
tion (BA). BA is a discrete-time cellular au toma ton  with stochastic initial 
data. 

We will now use the process X(n), n ~ N, to construct  another  discrete- 
time process S.(n), n E ~. This is done in the following manner:  

for each co~s S.(n)[co] is a continuous function from R to R 
such that  So(n)[og] = 0 and if X(n)[co] contains a particle with a 
positive (resp., negative) velocity at a site i e Z ,  then S.(n)[og] 
increases (resp., decreases) linearly with the tangent 1 between the 
abscissas i and i +  1; if there is no particle at i in X(n)[co],  then 
S.(n)[og] is constant  between the abscissas i and i +  1 (1.3) 

The process just defined will be called an integrated process. Definitely, 
S.(n) reflects completely the distribution of particles and their velocities in 
the BA at t ime n. However ,  the description of the limit (n ~ ~ )  law of 
S.(n) is much  easier than that  of  the limit law of X(n) and thus is preferred 
in this paper. The relation of S.(n)[co] to S.(0)[o9] is the following: for 
each co e g2 and each n i> 1, the function ( ( n ) [ o g ]  defined by 

~, (n )[og] :=min{Sv(n-1)[og] ,x - l<~y<~x+l} ,  x ~ R  (1.4) 

has the same shape as S.(n)[o~] and one may  be obtained from the other 
by a vertical shift. The latter assertion is checked straightforwardly. 
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Iterating, then, one obtains that S.(n)[co] has the same shape as the 
function whose value on co ~ g2 and x E R is defined by 

min{ Sy(0)[co], x - -  n <<, y <,N x + n} (1.5) 

and one may be obtained from the other by a vertical shift. 
An application of this fact will be presented in a moment. 
The contents of the present paper are the following: 
Theorem 1 provides the distribution of the particles in the BA at each 

instant n ~ N. It states that this distribution is invariant with respect to 
translations of 7/and that given a particle at a site i ~ Z, the distributions 
of the particles to its left and to its right are independent. To complete the 
picture it thus suffices to present the law of the interparticle distance. 
Theorem 1 states that if there is a particle at time n at a given site, the 
probability the particle to its right has the opposite velocity is proportional 
to (x/~) -~. Consequently, one will see 7/ divided into portions in such a 
way that each one contains solely particles of the same velocity, a cluster. 
The typical number of particles in a cluster is of order x/-n. Within a cluster 
the interparticle distance is distributed as the random variable a(n) defined 
in (2.1) below; a cluster of particles with negative velocity is separated from 
the cluster to its right with the particles of positive velocity by a particle- 
free portion of 7/ of the random length 2n + a(n), while in the opposite 
case, this length is distributed as O(n)+ a(n), where the random variable 
0(17) is independent of a(n) and is specified in (2.4) below. The distributions 
of a(n) and O(n) are calculated explicitly through the times of return to 
zero of a simple symmetric one-dimensional random walk. As we will show 
in the proof of Theorem 2, Ea(n) is proportional to x/~, so the mean 
spatial extension of a cluster is of order n. 

Part (a) of Theorem 2 presents the limit (time--+ oo) distribution of 
particles in BA in terms of the limit law of the corresponding integrated 
process. We consider S.(n) conditioned to the event that at time n there is 
a particle with positive velocity at the site 0 and the nearest particle to its 
left has negative velocity. We show that this conditional distribution 
rescaled by (2n) -1 along the abscissa and by n -I/z  along the ordinate 
converges (as n--+ oo) to the process ~ which we explicitly construct in 
Section 2.2. A generic trajectory of this process is presented in Fig. 1. The 
increasing portion of a trajectory of ~g corresponds to a cluster of particles 
with positive velocity, while its decreasing portion corresponds to the 
opposite velocity. The "valleys" of gt have length 1 because a(n)/(2n) is 
infinitesimal; however, the "plateaus" are random because O(n)/(2n) has a 
nontrivial limit O from (2.13) [this limit has been computed in Eq. (3.25) 
of ref. 8 through approximation of 0(n)]. 



520 Belitsky and Ferrari 

Part (b) of Theorem 2 relates ~. to the process B. ~i"'' that is con- 
structed by transforming the standard one-dimensional Brownian motion 
Bx, x e R (Bo = 0), in the following way: 

Bmi"":=min{By:x-- t /2<~y<~x+t/2} ,  t e R  (1.6) 

We call the process defined in (1.6) the moving local minimum of the 
Brownian motion. Its relation to the process 7" stems from two facts: First, 
as we have shown in (1.4), (1.5), the shape of S.(n) may be obtained from 
S.(0) using the transformation that is of the same nature as the one 
employed to construct B mi"'' from B.. Second, the rescale which brings 
S.(n) to ~ ,  being applied to S.(0), brings it to the Brownian motion. 

Our interest in the BA was motivated in part  by the work of Krug and 
Spohn. (8) There, the process {S.(n), n e I%1} was considered as a model of 
surface growth. The authors observed that the study of their process is 
equivalent to the study of the process {X(n), n e l l }  that in turn had 
appeared in the mathematical literature as a model of the irreversible reac- 
tion A + B ~ inert. This model is usually called annihilating kinetics. Some 
results and an extensive list of references on this issue may be found in the 
work of Elskens and Frisch. (3) Krug and Spohn also noticed that the 
dynamics of their process was equivalent to that of a particlar cellular 
automaton that has the number 184 in the classification of Wolfram. (1') 
Then Fisch (5) studied the same process to obtain results about another pro- 
cess with equivalent dynamics, the so-called one-dimensional three-color 
cyclic cellular automaton. 

Krug and Spohn computed the decay of density of particles in the BA 
and the two- and three-point correlation functions. They also discussed the 
shape of S.(n) and the transformation it undergoes when n--* oo (in this 
respect, see Remark 1 in Section 2.2 below). The results obtained in refs. 3 
and 5 provide the rate of the asymptotic decay of the density. Their results 
were also partially extended to the case when the initial distribution of par- 
ticles forms a renewal process and the particle velocities are chosen inde- 
pendently with equal probabilities. The case of a general initial distribution 
of particles was studied by Ben-Naim et al.(3); however, the argument in 
this work is based on the mean-field approximation, which is different from 
that employed in the references we mentioned above. 

We must emphasize that our proof of Theorem 1 as well as those from 
the papers which investigate the dynamics (1.1) are based essentially on the 
following property of the BA: the time elapsed till a given particle 
annihilates may be expressed through the time of the first return to the 
origin of a random walk in 7/(this will be stated exactly in Assertion 1 of 
Section 3). This random walk is simple and symmetric for the initial 
distribution (1.2). 



Deterministic Surface Growth 521 

2. RESULTS 

2.1. The Distr ibution of the Process for each ne  N 

This is given by Theorem 1 of this section. It states that the point 
process induced by {i~7/:  Xi(n)=l}  is a space-homogeneous renewal 
process; it then gives the distribution of the interrenewal times and the 
distribution of the particles with negative velocity between successive 
renewals. The section terminates with a justification of why Theorem 1 
indeed gives a complete description of the BA at time n. 

Throughout this paper, u~(f~) stands for the probability that a simple 
discrete-time random walk on 7/ starting from zero returns to the origin 
(for the first time, respectively) at the epoch l. 

For each n e •, we introduce a random variable a(n) by [in (2.1) 
below and throughout the paper, a sum is assumed to be zero when its 
upper limit of summation is less than the lower one] 

Mn) 

a(n) := ] + y'  g,(n) (2.1) 
/ = 1  

where gi(n), i = 1, 2 ..... is a sequence of i.i.d, random variables with 

P[gl (n)=l]  =f t (1  -- u2,,) -~, / = 2 , 4  ..... 2n (2.2) 

and the random variable 2(n) is independent of g~(n), i =  1, 2 ..... and is 
specified through 

1 + u2,, ( ~ _ ~ e ) "  
P[2(n) = m ]  2 , m=O,  1 .... (2.3) 

We also introduce random variables O(n), n E N, by 

P[O(n) = Z -  1 ] = (u~,,)-' (f ,  f2,, + f t + z f ~ - 2  + "'" +f2,f,),  l =  2,..., 2n 

(2.4) 

Theorem 1. Assume (1.2) is the initial distribution of particles in 
BA. Let n be an arbitrary positive integer. Then: 

(i) The distribution of X(n) is invariant with respect to translations 
of Z. 

(ii) Assume that for some iEZ, the event C =  {X~(n)= 1} holds. Let 
.4 and B be two events which depend on Xj(n), j <  i, and Xj(n), 
j >  i, respectively, and such that .4 n C ~  ~ and B c~ C #  ~ .  
Then 

P [ A I C n B ] = P [ A I C ]  and P [ B I C c ~ A ] = P [ B I C ]  (2.5) 
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The relations (2.5) are also true for C =  { X i ( n ) = -  1}. 

(iii) For i E Z, denote by R(i) the position of the first particle to the 
right of the site i at time n. Then, independently of i, 

of/, 

p ,  := P[Xi(n)=XR(i)(n)l  IX~(n)l = 13 

= 1 - P[X~(n)= -XR(i)(n) I IX;(n)l = 1] = 
1 

(2.6) 
l + u2,, 

(iv) Under the notation of (iii) above, for each ke /~ ,  independently 

P[ R ( i ) - i = k  l Xi(n)= XR,)(n)= - 1 ]  = P [ a ( n ) = k  ] 

F[R( i )  - i = k  J Xi(n) = Xm,)(n) = 1 ] = P[a(n)  = k ]  
(2.7) 

P [ R ( i ) - i = k I X ~ ( n ) =  -XR. ) (n)  = - 1 ]  =P[2n+~r(n)=k]  

P[ R( i ) - i= k l Xi(n) = - XR(i)(n) = 1] = P [ 0 ( n ) + a ( n ) = k ]  

The above theorem describes completely the distribution of particles 
and their velocities in the BA at each time n ~ ~/. This fact is substantiated 
by the following reasoning. 

Let L(i) denote the position of the first particle to the left of the site i. 
For each n, the set J ( n ) : =  {i: X i ( n ) =  1 and XL(;)(n)=--1} is almost 
surely not empty (this will follow from the argument we use to prove 
Theorem 1) and the points of this set form a stationary point process on 
7, due to the above theorem. The same theorem gives the distribution of 
the BA at time n conditioned to the event 0~ J(n) .  By standard Palm 
distribution theory, this determines uniquely the distribution of the BA 
provided the mean distance between the points of the set J ( n )  is finite (for 
each fixedn). The latter is true: indeed, due to (ii)-(iii) of the above 
theorem, p~(1 - p , )  is the probability that given a particle at time n, one 
will find exactly k (k = 0, 1, 2,...) particles with the same velocity to its right 
before a first particle with the oppsite velocity is met. Using then (iv) and 
the definitions (2.1)-(2.4), one finds that the expectation of interest equals 

2 kp~(1-p . )  r-a(n)+~_[2n+2cr(n)]+E[O(n)+2a(n)] 
k 0 

and is finite. 

2.2. The Limit Law of the Process 

This section discusses the limit behavior of the BA. We give an explicit 
construction of the law to which the integrated process that corresponds to 
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the BA converges as n ~ ~ when being appropriately rescaled. We then 
use a representation of the dynamics of the BA by a simple transformation 
of a functional space to show that this law relates to the law of B rain'' 
defined in (1.6). 

We define the family of operators {Mr} r~o which act in the following 
manner: 

(Mrf)x:=min{fx:x--r<..y<...x+r}, Vx~R, Vf:  •--* R continuous 

(2.8) 

For each n e  I~l, we then define a random function ~.(n): R x g2--* • by 

~A0)[co] :=Sx(0)[w], xeR, coe~, 

where S.(0) is from (1.3); and for n >/l, (2.9) 

~x(n)[w] :=(Ml~.(n--1)[co])x, xe~,  wet'2 

An important observation is that for each n, co, and x e [~, 

~x+ l(n)[ co] -- Sx(n)[ col = Xx(n)[co] (2.10) 

The above relation holds for n = 0  by the definitions (1.3) and (2.9). One 
then verifies (2.10) inductively in n by comparing the way X(n)[co] is 
obtained from X ( n - 1 ) [ c o ]  with the way $.(n)[co] is obtained from 
~ . ( n -  1)[co]. It is also straightforward to see that ~.(n) is a linear function 
between any two consequent points with integer abscissas. From (2.10) and 
(1.3), we thus have that S.(n)[co] and ~.(n)[co] have the same shape and 
the former may be obtained from the latter by shifting by ~o(n)[co] in the 
vertical direction: 

S~(n)[co]=~x(n)[w]-~o(n)[co], Vnel~, coeg2, x e R  (2.11) 

Obviously, each one of S.(n) and ~.(n) provides us with a complete 
picture of the distribution of particles and their velocities at epoch n in the 
BA. Theorem 2 will give the limit laws for these two functions. Before we 
formulate it, we pause to define the process ~ which will be used to 
describe these laws. 

The construction of ~g makes use of a process G,, t >/0, whose 
informal definition may be given as follows. G o - 0 ,  it has nondecreasing 
trajectories, and the Lebesque measure of the abscissas where the derivative 
is not zero is zero. Its generic trajectory is like the Cantor function and 
consists of plateaus. The lengths of the plateaus of G. whose height (in G.) 
belongs to [a, b] are independent of those whose height belongs to [c, d] ,  
0 ~< a < b < c < d < c~. If we consider those plateaus whose height is in 
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[a, b], 0 ~< a < b < oo, then the number of those whose length exceeds 1 is 
a Poisson random variable with parameter ( b - a ) x  [ 1 / ( x / ~  ) - 1/x,/~], 
IE(0, 1]. 

There is a standard way to introduce G.. We define a process T~, s >10, 
as the subordinator (Chapter 6 of ref. 7 contains all the facts about sub- 
ordinators we will use below) whose L6vy measure/z has the following 
form: 

dl 
It(dl)-2(zd3)l/2, l~(0,  1), dl~[O, 1] (2.12) 

We then define G,, t >/O, as the process whose right-continuous inverse 
is 7". 

Let { G +;, G;-;, t >/0} ~ z  be a set of independent copies of the process 
G,, t/> 0. Let also 0 be the random variable such that 

P[O<~x]:=2x'/2(l+x) -I, x E [ 0 , 1 ]  (2.13) 

and let {0,}, ,z be a set of independent copies of 0. Finally, let {~t,, fl,},~z 
be a set of independent exponential mean-1 random variables. 

By (F, (~) we denote the abstract probability space on which the 
random variables introduced above take their values in such a way that 
they all are mutually independent. On this space, we define a process ~. 
with continuous trajectories in the following way: To each y ~ F associate 
the set { (+  = ~ + [ Y ], ( 7  = (7  [ Y ] } ,~ z of hitting times: 

( + [ y ]  :=min{t  : G+'(t)[7] =0q[y]  } 

r  :=min{t  : G- ' ( t ) [7 ]  =fl , [Y]},  i~71 

and construct the set of random variables 

{t,= ti[~] , t; = t;Ey], t,'-'Ey], ti." = t;"Ey]} ,~z 

by t o = 0 and 

t; = ti + ( +  

t~' = t; + O, 

t;" = t;' + ( 7  
(2.14) 

ti+l = t~" + 1, i~Z 
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s 

Fig. 1. 

s ~+ 4 

A generic trajectory of the process P .  

Then the realization of the process ~. on an element y ~ F has the following 
structure (see Fig. 1): 

~o:=0 
~ , , + , -  ~,, := G~ i , 0~< t~<~,. + 

~ , ; + , -  ~t; :=0,  O<~t<~Oi (2.15) 

~t;"+,- ~,';' :=0,  0~< t~< 1 

We are now in a position to formulate our result. Observe, that 
(M,IzB)" is just an alternative notation for g min't defined in (1.6). We also 
remark that Ent], the integer part  of nt, appears below in n-I/z~zb,.([nt]) 
because formally we have defined the BA process solely for natural instan- 
ces of time. 

T h e o r e m  2. (i) Let Bx, x ~ R ,  be a standard two-sided, one- 
dimensional Brownian motion with B o = 0, a.e. Then, for every t > 0, 
(n) -  1/2 ~,,, ( [n t ] )  converges, as n ~ ~ ,  weakly on every finite interval of R, 
to the process V/2 (M,~_B). (or, equivalently, to the process V/2 B.min.,). 

(ii) The process (n)-l/2S2,.(n)=(n)-l/2(~2,,.(n)-~o(n)) condi- 
tioned to the event {2"o(n)= 1 and XLto)(n)= - 1 }  [L( . )  has been defined 
right after Theorem I ] converges as n ~ ~ ,  weakly on every finite interval 
of R, to the process ~.. 

We now devise a terminology which will be handy in describing the 
shape of trajectories of S.(n) and ~.(n). A portion of S.(n)[co] whose 
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abscissas belong to an interval [ x , y ]  will be called nondecreasing (non- 
increasing) if [x, y) contains only those particles of X(n)[r which have 
positive (negative) velocities, the sites x and y -  1 are occupied by particles 
with positive (negative) velocity, and the nearest particle to the left of x as 
well as the nearest particle to the right of y - 1  have negative (positive) 
velocities. A portion of S.(n) whose abscissas belong to an interval [z, u] 
is called a valley (plateau) if z is the abscissa of the rightmost point of a 
nonincreasing (nondecreasing) portion, u is the abscissa of the leftmost 
point of a nondecreasing (nonincreasing) portion, and there are no 
particles in (z, u). A portion of ~.(n)[09] will have the same name as that 
portion of S.(n)[09] with which it coincides after ~.(n)[og] is shifted 
by ~o(n)[09] in the vertical direction [recall (2.11)]. The division of 
(n) -1/2 $2,,.(n)[09] into portions is naturally inherited from the division of 
S.(n)[co]. 

Utilizing the above terminology, we may interpret the result (ii) of 
Theorem 2 as the description of the limit law for S.(n) (under appropriate 
rescaling) as seen from a point at which a plateau and a nondecreasing 
portion of S.(n) join. 

R e m a r k  1. It was conjectured in ref. 8 that the process to which 
(n) -I/2 S2..(n ) converges should be self-similar with appropriate scaling 
factors. More precisely, the distribution of this process was conjectured not 
to change if all the trajectories are shrunk by bl/2 along the ordinate and 
by b along the abscissa for any b > 0. This conjecture indeed holds and it 
may be demonstrated by showing that (nb) -1/2 S2nb.(n ) conditioned to the 
event {Xo(n ) = 1, XLtO)(n)= --1 } converges to ~ as n ~ ~ .  This proof will 
be analogous to the one we present in this paper to establish (ii) of 
Theorem 2. However, the self-similarity of the limit law can be seen without 
its explicit calculation, but rather from the self-similarity of the Brownian 
motion. The argument is as follows: Fix b ~ t~ to avoid technical complica- 
tions. Observe that ,~2,,b.(n) should be distributed as ~2,,.(nb) because 
"speeding up" the time by b in the BA is equivalent to changing the 
velocities from + 1 to +b. Thus, due to (i) of Theorem 2, (nb) -1/2 ~2b,,.(n) 
converges to (2/b) m (Mb/2B).. Using then the fact that bl/2B is distributed 
as Bb., it is easy to derive that (2/b) 1/2 (Mb/2B). = x//2(MI/2B), in distribu- 
tion. The argument is then completed by recalling that S.(n) and ~.(n) have 
the same shape [relation (2.11)]. 

R e m a r k  2. As we observed in Section 1, the proof of item (i) of 
Theorem 2 follows by a simple argument based on a specific relation of 
S.(n) to S.(0) and the fact that (n) -~/2 $2,,.(0) converges to x/~ B.. We did 
not find, however, the law of the process (MI/2B). in the literature. The 
explicit description of the limit law for S.(n) we gave in item (ii) of 
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Theorem 2 follows from the results of Theorem 1. One may then combine 
(i) and (ii) of Theorem 2 to conclude the following statement (whose proof 
will be omitted). 

S t a t e m e n t .  For a function f :  ~ - ,  •, call a point (x, f x ) ~ R  2 a 
comer point iff~ =f.~ for all z e [ x -  1, x]  and there exists e > 0 such that 
f~>f_, for all z~(x, x+e). Then V/2(M~/EB). (equivalently, x/~B. ~in'') 
conditioned to have a corner point at (0, 0) is distributed as ~ .  

One may consider the above corollary as a result on a Brownian 
motion obtained via its approximation by a simple symmetric random 
walk on Z. It is natural to expect that the same result could be derived 
without employing this random walk, but rather directly from the defini- 
tion of the Wiener measure. We have no a complete and clear idea of how 
this could be done (see, however, Remark 3 below). What we conjecture is 
that the structure of the nondecreasing portions of ~. may be captured 
employing a reasoning similar to that presented in ref. 7 to obtain the law 
of B m~x, where for each x >/0, B max := max{By, 0 ~< y ~< x}. Our conjecture 
is suggested by the following observation. It is easy to calculate from the 
results presented in ref. 7 that the L6vy measure for the right-continuous 
inverse of the process ~/2 B m~x is 

dl 
flmax(dl)-2(~zl3)l/2, l~(0, +or )  

We thus observe that ~t max coincides with ~t on (0, 1 ). In words, the law of 
G. is that of v /2  B. ~ax conditioned to have no flat portions of length greater 
than 1. 

R e m a r k  3. After this paper was composed, Jim Pitman pointed out 
that the distribution of B min't c a n  be obtained using methods of Palm/ 
excursion theory as developed in refs. 9 and 10 and some of his subsequent 
unpublished work. 

3. PROOFS 

3.1. D is t r ibut ion  for  F ini te  T ime  

R e m a r k  on  N o t a t i o n .  We will usually write X; for Xi(0). 
Define Z,., i e Z, by 

Z o - 0 ;  Zi=Zi_l+Xi, i~72 (3.1) 
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Observe that due to (1.2), 

Zi, i t  N, and Z_i, i t  N (3.2) 

are simple random walks in 7/starting from 0. 
We call a particle positive (negative) if its velocity is +1 ( - 1 ) .  

Particles annihilate in pairs. Particles of the same pair are said to be 
annihilating companions of each other. 

The following assertion will be frequently exploited in the sequel. It is 
a direct consequence of the dynamics of BA [rules (i), (ii) from Section 1 ]. 

A s s e r t i o n  1. (i) Denote by i* the initial position of the 
annihilating companion of the particle which initiated from the site i. Then, 
independently of i, these particles have annihilated by time n iff l i -  i* I ~< 
2 n -  1. If these particles have annihilated by time n, then so have all the 
particles which were initially present between the sites i and i*. 

(ii) If a positive particle occupies initially a site i, then the initial 
position of its annihilation companion is the first return of Zk, k > i, to the 
level Z i _  1 = Z i -  1. 

Proof of Theorem 7. Throughout the proof, n is assumed to be 
arbitrarily fixed. 

If for some co~, co2el2, X(0)[col] may be obtained from X(0)[co2] by 
a translation of 7/, then the same tranlation brings X(n)[o)2] to X(n)[o)~] 
for all n e N. Combining this with the fact that the law of 2"(0) is trans- 
lation invariant, one obtains (i) of the theorem. 

Let us demonstrate (ii). Take C= {Xi(n)= l}; for another choice 
of C, the proof is analogous. It is easy to derive from the dynamics of BA 
that when A n C4: O and B n C r  ~ ,  then B n C is uniquely expressed 
through the values of X~(0), k>~i-n,  while A is uniquely expressed 
through the values of Xk(0), k <  i - n .  (To see that the assumptions 
A n C r ~ and B n C ~ ~ are indispensable, observe that if, for example, 
A= {Xi_l(n)= --1}, then there is no X(0)[o)] such that X(n) [o) ]e  
A n C). Since X;(0), i t  7/, are independent, then it holds that 

P[A n C n B ]  = P [ A ]  P [ C n B ]  (3.3) 

Taking B = / 2  in (3.3) gives that P[A n C] = P [ A ]  P [C] .  Combining the 
latter with (3.3), one easily derives both equalities of(2.5). 

Now, we start the argument which will establish (iii) and (iv). Call the 
particle which occupies the site 1 at time 0 principal. Define ~ + = /2  + (n) := 
{co e [2: X,+ 1(n)[o9] = 1 } a n d / 2 -  =/2 - ( n ) : =  {co e/2:  X_,,+ i(n)[o)] = - -  1 }. 
/2 + and t2-  are the events that the principal particle has velocity + 1 and 
- 1 ,  respectively, and is alive at time n. The particle which is the closest 
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particle to the rigth of the principal particle at time n will be called 
successor. (Observe that the successor is defined on the set g 2 + u l 2 - . )  
Denote b y / 2  "+ = t2"-+(n) the event that the successor has velocity _ 1. On 
the set U*t-2ans b, where the union U* extends over all ordered pairs 
(a, b), a, b e { + ,  - } ,  we introduce the random variable A =A(n) as the 
distance between the principal particle and its successor at time n. For 
a, b ~ { +,  - }, we then define the random variable Gr ab = Gr~ by 

P[a~b = l ]  := P[A = l I g2" rig2"~ l = 1 , 2  .... (3.4) 

a ab expresses the distance between the principal particle and its successor 
at time n given the principal particle has survived by time n and has 
velocity a and its successor has velocity b. 

Define the set of random variables 

kl  =-- 2, r I , k2 - rl + 1, rE ..... ki  =- ri_ l + 1, ri .... (3.5) 

by the following rules: for i > 1, ki is the position of the leftmost particle in 
the interval [r,-_l + 1, oo) in X(0) [for an initial distribution other than 
(1.2), k i - r  i_ ~ may not be a degenerate random variable as it happens in 
the considered case]; for i~> 1, r; is the initial position of the annihilating 
companion of the particle which originated from k;. Using the random 
variables (3.5), we define the set of events {A,, = Am(n),  rn 1> 1 } by 

A , , : = { X k , = - - l a n d X k , = l ,  r i - - k i < 2 n f o r i = l , . . . , m - - 1  } (3.6) 

Verbally, A,, consists of those co e g2 for which initially there is a positive 
particle at the site 2 and it will have annihilated by time n, and also 
immediately to the right of its annihilation companion there is a positive 
particle which as well will have annihilated by time n, and this situation 
repeats recursively m -  1 times, and, finally, there is a negative particle 
immediately to the right of the negative particle of the ( m - l ) t h  pair. It 
follows from Assertion 1 and our defmition of A,, that on the event 
/ 2 - h A , , ,  the successor is the particle which originated from k,,, its 
velocity is - 1 ,  and, thus, 

m - -  1 

A = k , , - - l = l +  y '  ( l + r ~ - k ~ )  on 12-c~A,, (3.7) 
i = l  

Observe that due to (1.2), (3.1), (3.2), and Assertion 1, we have that 

P [ { X k , = l  } n { r , - k , = 2 l - 1 } ]  

= P [Zo=O,Z=  > 0  ..... Z 2 1 _ l > O ,  Z z t = o ] = f 2 - 2  (3.8) 
2 
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for every k~ and all l = 1, 2 ..... Then, using the fact that  (see III.3 in ref. 4) 

fxt---- U 2 t ( 2 l  - -  1 ) - l  = u2t-2 - u2t, 1 = 1, 2 .... (3.9) 

and the independence of the r andom variables X~, i e 7/, we find that  

n l - -  I 

P[A,,]=P[Xk,, = - 1 ]  1-I P[ {X~,= l} c~ {r,-k,<2n} ] 
i = 1  

2 (3.10) 

On the other hand, we have that  

/2- c~ U A,, = g2- c~ /2"- 
r t l  = 1 

Aic~Aj=~, iv~j (3.11) 

p[~- n.4,,,] = p[/2-] PEA.,] 

where for the first relation, one reasons as for (3.7), the second follows 
from the definition, and the last relation is true s i n c e / 2 -  depends on X;, 
i~< 1, while A,, depends on X~, i >  1. Combining now (3.10) and (3.11), we 
derive the following: 

pE~'-IK2-]=(PEg2-]) -~ ~ PE/2-nam]= ~. PEA.,]= 
r n = l  r n ~ l  l + U2n 

(3.12) 

Recall L( i )  [ resp., R(i )] denotes the position of the first particle to the 
left (right) of  the site i. A set of  positive (negative) particles of  X(n) in a 
region [a,b]~Z is called a positive (negative, respectively) cluster if 
Xo(n)=Xb(n)= +1 ( - -1 ) ,  Xk(n)~{O, 1} ({0, - -1})  for all k~[a,b], and 
X L ( a ) ( n )  = X R ~ ) ( n )  = - 1 ( + 1 ). 

For  a, b e  { + ,  - } ,  define p~b := P[XR(i)(n) =b I Xi(n) = a ] .  Due  to 
(i) of  Theorem 1, p,~b does not  depend on i. It follows from (3.1), (3.2), and 
Assertion I that P [ 3k: Xj (n) = 0 Vj >~ k ] = 0. Thus,  p,~ + + p,~,- --- 1. Based 
on (ii) of  Theorem 1 and using the two facts established above,  we 
conclude that  the number  of  particles in a cluster with a given velocity a 
is distributed as the r andom variable N ,  below 

P[N,,=k]=(p~")k(1-p,~,~ k = l , 2  .... (3.13) 
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Thus, if we assume that p~-- 4 :p~+,  then from (3.13), the proportion of 
negative particles in X(n) would be different from that of the positive ones. 
Since the latter is impossible, we have that p~- - 4: p,+ + and both are given 
by (3.12), which proves (iii) of the theorem. 

We now start to prove (iv). First, from (3.8), (3.9), and (2.2), one has 
that for 1 = 1, 3,..., 2n - 1, 

P [ { r i - k i = l }  n {Xk,= 1, 1 <<.ri--ki<~2n-- 1} ] 

= P[xk,= 1,,.,-k,=t] 

=f~+l /2=P[g , (n )= l+l ]  P[Xk,= 1, l<<.r,-k,<<.2n-1] (3.14) 

Since both sides of (3.14) are zero when / >  2 n - 1  or when l is even, then 
(3.14) is true for all/. Using the dependence of the random variables X;, 
i e 77, it is easy to check that for any sequence lg, i = 1 ..... m - 1, 

P[ { r i - k i = l  i, i= 1 ..... m -  1} n a n ]  
m - - I  

= I-I P[{ r i - k~=l , }n{Xk ,= l , l<~r~-k ,<<-2n-1} ]P[Xk , ,=+l ]  
i = 1  

(3.15) 

Using (3.8), (3.14), and (3.15) and the independence between Xi, i t  77, and 
consequent independence of r~-k~, i =  1,..., m - 1 ,  among themselves and 
of O - ,  we conclude that for all j ~  [below, g~=g~(n) and 2 =2 (n )  
defined by (2.2) and (2.3)1 

P I +  ~ ( l + r ~ - k , ) = j l O - n A , , , ] = P  1 ~ g , =  (3.16) 
i = l  1 

Next, from (3.11), (3.12), and (3.10) we derive that for all rn~> 1, 

)-' 
PEO-nA,.IO-c~O'-]= PEAl] PEA.,] 

i 1 

P[A,.] 
- - - =  P [ ; t = m -  1] (3.17) 

P,, 

From (3.16) and (3.17), we finally have that for a l l j~  l~, 

P [ a -  - = j ]  

= P E 4 = j I O - n O ' - ] =  E P E z / = j l O - n A , , ]  
m = l  

=PEO- hA,. IO- nO'-] 

822/80/3-4-3 
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I( .1 ) ] - P I +  ~ ( 1 + r : - k ~ )  = j i ~ 2 - n A m  
m = l  i = I  

x ~ [ ~ -  h A , ,  [ Q -  c ~ Q ' - ]  

= P 1 + = P [ a ( n ) = j ]  (3.18) 
i 

Indeed, the first equality follows from the definition, the second equality is 
due to (3.11), the third one is based on (3.7), the fourth is valid because 
of (3.16), (3.17), and because 2(n) is independent of {gi(n), i= 1, 2,...} by 
the definition, and, finally, the last equality holds because of (2.1). 
Recalling the meaning of a -  - and applying the property (i) of Theorem 1, 
one gets the first line of (2.7) from (3.18). 

We now show that ~ - - = a + + in distribution, which will establish the 
second line of (2.7). For every i, j s Z  and k s  N, 

P[ Xi(n) = XR(;)(n) = -- 1, R( i ) -- i= k] 

= P[XLcj)(n) = Xj(n) = -- 1,j--  L( j )  = k] 

To see it, express both events in terms of X(0) and observe that they can 
be obtained one from another by a translation of Z. But the last proba- 
bility equals PEXj(n)=XRm(n)= 1, R ( j ) - j = k ]  because for any set of 
indices I and any sequence {xi}i~1, P[Xi=Xg, i e I ]  = F [ X i = - x i ,  i~ I ]  
and because of (i) of Theorem 1. This reasoning leads to the desired 
relation ~ -  - = a + + 

Next, we sketch the proof of the third line of (2.7). We introduce the 
set of events {Bm=B,,(n), m>>. 1} by 

B , , : = { X k , = l , r ~ - k ~ < 2 n f o r i = l  ..... m - - l ,  Xk =l ,r , . - -k , ,>~2n } (3.19) 

which are defined by the means of the r.v. (3.5). By analogy with A,,, it is 
easy to see that on the set g2- n B,,, the particle which originated from k,, 
is the successor (of the principal particle at time n), its velocity is + 1, and, 
thus 

m - - I  

A = 2 n + k m - l = 2 n + l +  ~. ( l + r ~ - k i )  
i = l  

on t2-C~Bm. [Observe that in contrast to (3.7), the term 2n appeared in 
the above expression since the particles have diverged by this amount 
during time n.] From the last relation for A, using the random variables 
(3.5), one finds the distribution of a -  § in the same way as was done for 
a - -  from (3.7). 
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The devices necessary to establish the last line of (2.7) will be 
developed in the proof of the following lemma. The lemma's assertion itself 
will not be used to prove Theorem 1, but it will be of help when proving 
Theorem 2. The point is that due to (3.20), the mean and the variance of 
tr(n), which we will need to estimate in that proof, are asymptotically close 
to those of ((n). This fact will facilitate the calculations since the expression 
for ~(n) is simpler than that for a(n). 

Lemma 1. For each n ~ r~, it holds that 

P [ t r ( n ) = k ] = ( 1 - u  2)  p [ ~ ( n ) = k ] + u 2 . p  2n+O(n)+ ~. gj(n)=k 
j = l  

(3.20) 

for all k e •, where the random variable ~(n) is defined by 

P[~(n) = l -  I]  = f J ( 1  - u2n), 1=2, 4,..., 2n (3.21) 

and the rest of the variables involved in (3.20) have been specified in 
Section 2.1. 

Proof. We adopt all the definitions and notations introduced up to 
now. We will show that the r.h.s, of (3.20) expresses P [ t r + + ( n ) = k ] .  
Together with the second line of (2.7) of Theorem 1 this will establish the 
lemma's assertion. 

From (3.1) and Assertion 1, 

U2n I2+={Zo=O, Zl>O,...,Z2n>O}, whence, using (3.2), P[I2+ ] =-~  -- 

(3.22) 

On the set I2 +, define the random variable k o in the following manner: for 
every {Xi, ieT/} eI2 +, ko is such that 

Zko-I = I, Zk0 = 2, Zi>~2,Vi~ [ko, 2n] (3.23) 

Observe that 

ko assumes one of the values of the set {2, 4,..., 2n} (3.24) 

since if (3.24) is untrue, then at least one of Z2,..., Z2, equals zero, con- 
tradicting the fact that this sequence is from t2 +. Call marked the particle 
which occupies initially the site ko. It follows from the definition that the 
velocity of the marked particle is + 1. On the set s +, define the random 
variable r o as the initial position of the annihilating companion of the 
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marked  particle. On the set t2 § we then introduce the sequence of r andom 
variables {k;, r;, i =  1, 2,...} in the following way: kt : = t o +  1; and the rest 
of  the variables are the same as those from (3.5). Let {B,,=B,,(n), 
m = 1, 2,...} be the events defined through these r.v. by (3.19). 

Set Co:={ro-ko>~2n}. F r o m  (3.23), (3.24), and Assertion 1, it is 
easy to see that  on the set 12 § c~ Co, the marked  particle is the successor, 
its velocity is + 1, and, thus, A = ko - 1 on 12 + n Co. Consequently,  

pE{A=/-1}ncono +] 

= P [ { k o = l }  n C o n I 2  + ]  

= P{Zo = 0, Z i  > 0  ..... Z t_z  > 0, Z t_  1 = 1, 

Zt  = 2 ,  ZI+1 > 1 ..... Z2,,-x+t> 1} 

= 2 P [ Z o = 0 ,  Z~ > 0  ..... Z / _ l  > 0 ,  Z / = 0 ]  

x P [ Z o - 0 ,  Z ~ > 0  ..... Zz,>O] 

1 1 flu2,, l =  2, 4,..., 2n =2if,~u2.= 2 '  (3.25) 

Due to (3.24), we then have that  

2n 2/1 

PEI2 + a Co] -= 2 F [  {ko = l} n Co n I2 + ] = E ftu2,,/2 = (1 - u2.) uz./2 
1 = 2  1 = 2  

(3.26) 

Also, by (3.22) and (iii) of  Theorem 1, 

P[12+ c~t-2"+] = P[ t2  + l l2 + ] P[t'2+]=p, u2,/2 (3.27) 

F rom (3.25)-(3.27) and the definition of ~ = ~ ( n )  given in (3.21) we 
conclude that  for l = 2, 4 ..... 2n, 

PEA - - l -  1 I ~  § n Col PE~ § n Co I ~  § n ~  "§ ] = (1 - u~ . )  pEr = / -  1] 

(3.28) 

Put  now ~o:={ro-ko<2n}. Assume that  I2+~'onB., holds. 
Then, from the definition of the marked  particle and Assertion 1 it follows 
that  all the particles which were initially present in the region [2, ro] will 
have annihilated each other by time n. F r o m  the definition of Bin, then, the 
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particle which originated from k,, is the successor, its velocity is + 1, and, 
thus, 

m - - 1  

A=km--l=ro+ Y. ( l + r ; - k a )  o n  ['2+Ntoo~nm (3.29) 
i = 1  

Observe that from (3.24) and Assertion I, ro-2nE {1, 3 ..... 2 n - I }  
and for any / ~ { 1, 3 ..... 2n - 1 }, 

P[{ro=2n+l} n O  + ntoo] 

= Y, P{Zo=O,Z~>O,...,Zk_2>O, 
k =  I +  l,...,2n 

Z k _  1 = I ,  Zk=2 ,  Zk+l > 1,..., Z2 ,+l - i  > 1, Z2,,+t= 1} 

= Y', 2PEZo=0,  Z~ >0  ..... Zk_~ >0,  Z k = 0 ]  
k =  14- l,...,2n 

x P[Zo = 0, Zl > 0 ..... Z2,,4-i-k > 0, Z ~  4-I-k+ I = 0] 

I 
= ~ ( Z + , f = . + f , + 3 A . - = +  "'" +f=.,f,+,) 

= P [ O =  l] P [ O  + n too] (3.30) 

where the last equality follows from (2.4) and the fact that 

P[O + n too] = P ie  + ] -  P[O + n Co] =u~./2 

which is established using (3.22) and (3.26). 
Next, we observe that for any sequence l,., i ~ t~, 

P[{ro=lo ,  r , - k i = l i ,  i = l  ..... m - 1 } n O  + n t o o n B , . ]  

m - -  1 

= H P [ { r , - k , = l , }  n { X k , = l ,  l < ~ r , - k , < 2 n } ]  
i = l  

xP[{ro=lo}n~+ ntoo]P[{Xk.,=l,r.,-k,.>..-2n}] (3.31) 

Then, based on (3.14), (3.30), and (3.31) and using independence of the r.v. 
X;, i t  •, we derive that for each l~ t~ [below, 0, gj, and 2 stand for, 
respectively, 0(n), gj(n), and 2(n)] 

[m ] [ ] 
P ro+ ~ (l+r,-k,)=llt2+ntoonB,, ,  = P  2 n + 0 +  Y' gj=l 

i = 1  j = l  

(3.32) 
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Since, 

P [ O  § n do n Bin] = P[/2 + n do] P[am n { rm - k,, >t 2n} ] 

= P[/2+ n do] PEAm] u2,, 

then from (3.29) and (3.32), 

PEA = l l / 2  + n donBm] Pl-/2 + n donBm I/2+ n O ' + ]  

[ ] = P  2 n + 0 +  Y' gj=l P [ / 2 + n d o ] P [ A , , ] u 2 , , / P [ / 2 + n / 2  § 
j = l  [ m-' ] 

=u~,,P 2 n + 0 +  ~ gj=l P [ 2 = m - - 1 ]  (3.33) 
j = l  

where in the last passage, we used (3.27), (3.32), and the last equality 
of(3.17). 

Now, using the same reasoning as one that led to (3.11 ), one finds that 
Con  do = 121,/2"2 + n d o n B i n B j = ~  if iCj, and 

/ 2 + n / 2  "+=  U ( / 2 + n d o n B , . ) u ( / 2 + n C o )  
m = l  

Consequently, 

P [ a  ++ = l ]  -- P[A = l l / 2 +  ca Co] P[ /2+ ca Co I/2 + n / 2  + ] 

+ ~ P[A=ll /2+ndonB, ,]  
m = l  

x P[/2 + n d o n  B,~ I/2+ n /2"+]  (3.34) 

From (3.34), (3.33), and (3.28), we finally derive the assertion (3.20) of the 
lemma. I 

To complete the proof of Theorem 1, we use the random variables k~, 
r~, i E [~, which we defined in the proof of Lemma I, and observe that 
on the set /2 + n d o n A m ,  the successor is the particle which originated 
from kin, its velocity is +1,  and, thus, A = k , , - 1 - 2 n = r o - 2 n +  
~~ ' - t ( l+r i -k i )  on / 2 + n d o n A m  where in contrast to (3.29) we i = l  

subtracted 2n since the principal particle and its successor have converged 
by this amount by time n. Using the concept of the marked particle 
introduced in the proof of Lemma 1, it is easy to check tha t /2  + ca/2"- = 
12 + n do n ( U ~ =  ~ A,~) and /2  + ca do n A i n Aj = ~75 when i ~ j. Proceeding 
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as in the proof of the lemma, we finally derive that t r + - =  0+~,.a=l g; in 
distribution. This establishes the fourth line of (2.7) in (iv) of Theorem 1 
and thus completes the proof of this theorem. I 

3 . 2 .  T h e  L i m i t  L a w  

In this section, we show Theorem 2. We start with an auxiliary lemma. 

L e m m a  2. Let {tr,,.k},,~N,k~ N be a set of i.i.d, random variables 
such that 

tr++(n) 
in distribution V n ~ ,  Vk~N (3.35) 

O'n 'k  - -  2n 

For n ~ N, define a right-continuous nondecreasing process Ty(n), y/> 0, in 
the following way: To(n) := 0 and for each i ~ 7/+, 

Ti/,/g(n) : = G r n .  I -~  . . .  2UCrn. i 

while T.(n)is constant on the interval [ ( i - 1 ) / ~ ,  i/v/-n). 
Then, T.(n) converges as n--* 0% weakly on any finite interval of 

[0, +oo), to the process T. defined in Section 2.2. 

Proof. Let ~,,k, 0,,k, k, n ~ N, be independent random variables such 
that 

2n ' 
(3.36) 

2n + 8(n) + ~ =  ~ gj(n) in distribution Vn ~ N, Vk e N O.,k -- 2n 

We recall that the application of Stirling's formula [(9.15) in II.10 of ref. 4] 
gives 

u2,, - ~ 1 - - 1  ~< n ~ for all sufficiently large n (3.37) 

From (3.21) and (3.36), using (3.9) and (3.37) and evaluating ~ v/n by 
~ dx, we then have that 

1 2. 1 2. 

E [ ~ , , 1 ] - 2 n ( l _ u 2 ,  ) Y', ( l - - 1 ) f l = 2 n ( l _ u  ~ ~, ut 
1 = 2  2 n )  1 = 2  

= ~  1 + O  (3.38) 
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Let Gn,k(G'n,k) be the distribution function of the random variable 
~,,.k--~:~,,k(~,,.k, respectively). Then using (3.38), 

J' 2 I'Y + E~n,k 2 
f_~ox dG,.k(X)=J_oo x dG'.k(X)--2EEr EE~,,.kllr162 

+ P[~..k ~<Y + E~,,,k](E~,,,k)'- 

(!) = -o~ x dG,,.k(X) + 0 (3.39) 

For 0 ~< y ~< 1 (below, the square brackets in the upper limit of a sum mean 
"the integer part") 

[ 2 n ( y  + F.,Y,n.k)] 

f'v+F-r dG;,,k(X)= [ 4n2(1--U~,) ] - I  
- - ~  1 = 0  

1 + ~  

( l -  I)2fl 

(3.40) 

where the second equality is obtained in a similar way to (3.38), taking into 
account the fact that E~,,.k = O(n-~/2). From the definition of ~,,.k, the left- 
hand side of (3.40) equals 0 when y <0  and equals jl_~ x 2 dG',,.k(X), when 
y > i for all n large enough. Thus, 

lim Y' 
n ~ o o  k ~ l  i y + er x 2 d G ' , . d x )  = u x F ( y )  

- -  o o  

where 

0 if y < 0  
F ( y ) : =  (3x//-~)-ly 3/z if 0~<y~<l 

(3 v/-~)- '  if y>~l 

(3.41) 

(3.41a) 

Let n o w  Hn, k denote the distribution function of O,,.k -- r-O,,.k. Since, by 
definition, [O(n)[ <~ 2n, then r-O(n) < Cn and Var O(n) < Cn 2. Also, the 

reasoning as in (3.38), one easily gets that Egi~ Cx /~  and Eg2~ Cn 3/2. 
From the last two asymptotic relations, the distribution of 2(n), and the 
fact that 2(n) and gi(n), i eN ,  are independent, we have that 
Var(Y.~= 1 g ; )~  E2~:(g~). Using these facts and mutual independence of the 
random variables O(n), 2(n), and gdn),  i e  N, we get from (3.36) that 

fo~ C[Var O(n) + n:2(n) nz(g~(n))] 
EO,,.k = O( 1 ), : _~  x 2 dH,,.k(x) < (2n) 2 O(1) 

(3.42) 
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Finally, let F,. k be the distribution function of an. k --[Fan, k. Using the 
relation between a,,.k, ~,,.k, and 0,, k which stems from (3.20) and (3.35), 
(3.36), we then derive on the basis of (3.38), (3.39), and (3.41) that as 
n--* oo, 

[" "/;] u 
[]zan,  k - -*  _ _  

~=' x//-~ (3.43) 
Cu ~/n] ), C u v/~] t ' y + ~ - r  2 t 

"lira~176 k~- - , f-~x2dFn'k(x)="lim~176 k~, J -~  x dG,,.k(x) 

By (3.41) and (3.43), there is a constant C >  0 such that 

Var a,,., = k~=l f_ x2dF,, .k(x)~C 

Thus, applying Theorem 2 of Section 21 of ref. 6, we conclude that 

[ 
-~ exp u + [exp(ity) - 1 - ity] y-2  dF(y) (3.44) 

- - o o  

for each t e ~ as n-~ o% where F(y) was defined in (3.41a). 
By a standard argument, we then conclude that the finite-dimensional 

distributions of T.(n) converge, as n -~ oo, to that of a process 7". which is 
not decreasing, has independent increments, and E[exp{itT,} ] is given by 
the expression in the right hand side of (3.44). Thus, T is a subordinator. 
From comparison of its characteristic function to the moment generating 
function in the L6vy-Khintchine representation of subordinators (see 
Theorem 6.2.7 in ref. 7), we find that the L~vy measure of 7". is ~ defined 
in (2.12).. 

To complete the proof, it is left to check that for each finite u, { Ty(n), 
0 ~ y ~ u}, ~ ~ forms a tight family/~) For this, consider the compact family 
of nondecreasing right-continuous functions from [0, u] to [0, K] and 
show using the expression for the characteristic function of Tu(n) that its 
measure should.be > 1 - e when K is chosen sufficiently large, uniformly in 
n >n(e). | 

Recall the rule of division of n-~/ESz,.(n) into portions which we intro- 
duced immediately after Theorem 2. Consider n-I/2S2,.(n ) conditioned to 
the event {Xo(n)=l ,  X t lo ) (n )=- - l}  and take that one of its non- 
decreasing portions whose leftmost point is at the origin of R z. Extend this 
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portion to be defined on the whole R in a way such that the obtained 
process is stationary and has independent increments. This process will be 
exactly G,,(n), x e R +, studied in the lemma below. 

L e m m a  3. Using the random variables (3.35), define for each n e N, 

(,,.o :=0, ( . ,k:=a. , l+ ... + a . ,  k, k = l , 2  .... 

For each n e N, define then the process Gx(n ), x >1 O, with nondecreasing 
continuous trjectories in the following manner: Gr k e N, 
G.(n) is constant on each interval [(. ,k + 1/2n, ( . ,k+l] ,  k e  N, and G.(n) is 
obtained by a linear interpolation between each pair of points ((.,k, 
Gr and (~.,k+ 1/2n, Gr ke  N. 

Then, G.(n) converges as n--+ 0% weakly on any finite interval of 
[ 0, ~ ) ,  to the process G. defined in Section 2.2. 

Proof. Fix n e N. Define T.*(n) to be the right-continuous inverse of 
the process G.(n). Let Rt and R2 be two copies of R. Consider the first 
quadrant of the Euclidean space Rt • R~. Mark the points 0, ~.,~, ~,,,2,--- 
on n,  and the ponts 0, 1/x/~, 2/.~/"n,...~ on R2 and consider the corre- 
sponding trajectory of G.(n) (as a function from R, to R2) and that of 
T*(n) (as a function from R2 to R~). By the definition, r k e N ,  
determine uniquely the values of a , . , ,  k e N. Thus the marked points 
correspond to some trajectory of the process T.(n) whose construction was 
presented in Lemma 2. We consider this trajectory as a function from R2 
to R~ and compare it now to the trajectory of T*(n). By our construction, 
T*(n)=Ty(n), when y=i/~/-n, ieN,  and o n  each interval [i/x//-n, 
( i+  l)/x,/n), ie  N, T.(n) is constant while T.*(n) grows linearly with the 
tangent (2x/~) -t .  Using this "closeness" between T.(n) and T.*(n), the 
fact that T*(n) is a right-continuous inverse of G.(n), and T is the right- 
continuous inverse of G. and the assertion of Lemma 2, we conclude that 
the finite-dimensional distributions of G.(n) converge, as n---, o% to that 
of G.. The tightness of the family {G. (n )} ,~  is verified in the same way 
done in Lemma2 for the family {T.(n)},~ N. | 

Lemma 4. For O(n) defined in (2.4) and t~ defined in (2.13), it holds 
that O(n)/2n ~ 0 in distribution, as n ~ oo. 

Proof. For each / =  1, 2,..., n, we have that P[0(n) > / 2 l -  1 ] equals 

u;,? y. f2,f j= ' 
1 ~ i , j ~ n  <~x,y<~l~ 

i + j > ~ n + l  x +  y > ~ n + l  

[ n ( 2 x -  1) (2y-  1) x / ~ ] - '  dxdy+o(n- ' )  

(3.45) 
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where the error of approximation of the sum by the integral was evaluated 
using (3.9) and (3.37). The value of the integral in (3.45) is 

[ (nl-1)a/2_ (ln-1)l/2][n( n + l)] -1 _ (l-l/2_n-X/2)(nnl/2)-i + o(n-i) 

Thus, using the fact that u~,2= nn[ 1 + O(n-~)] which follows from (3.37), 
we conclude that 

[O(n)>21-1] 2~1/2 if l ~ f o r s o m e ~ ( 0 , 1 ) a s n ~ o o  | 
P /  2n 2n J~l-- l+----~ n 

Proof of Theorem 2. Using the property M~o Mb = Ma+b, a, b >>.O, 
and simple algebra, one finds easily that for all x ~ R, all co ~ O, and all 
t e N ,  

~2.x(tn)E~ (~2..(O)._[c~ 
Since n-1/2S2n.(O)[fO] converges to x/~B. and since Mr~ 2 is a continuous 
transformation, the assertion (i) for t~t~ follows (see Theorem5.1 in 
ref. 1). The way this assertion is extended to all t e R is standard and will 
be omitted. 

We start to establish (ii). Consider S.(n) conditioned to the event 
{Xo(n)=l ,  XL(o)(n)=-1}.  As we saw in the proof of Theorem 1, the 
number of positive particles in the cluster that includes the particle at the 
site 0 is expressed by the random variable N, defined in (3.13). Let Y, be 
the position of the rightmost particle in this cluster. Set H,  := N,/v/-n and 
r, := Y,/(2n). Recall from Theorem 1 that N, is independent of the distan- 
ces between the particles in the cluster and that H,, converges to an 
exponential mean-1 random variable, facts we will use below. Observe that 
by our construction, the portion of n-~/2S2,.(n) on [0, 3,] may be con- 
sidered as a part of G.(n) stopped at the moment it reaches the level H,.  
Since by Lemma 3, G.(n) converges to G. and since the portion of ~ on 
[0, t0] is obtained from G. by "stopping" it at a random level which has 
an exponential mean-1 distribution, we thus derive that the nondecreasing 
portion of n-1/2Szn.(n) whose leftmost point is at the origin converges to 
the portion of ~. whose abscissas lie between to=0  and t0. (There are 
certain problems in determining the meaning of the convergence, since the 
abscissas of the considered portion of n-~/2S2,,.(n) belong to [0, r , ]  while 
those of the portion of ~. belong to [0, t '] and t0 4: r ,  with probability 1. 
It is thus natural to establish the convergence in the Skorohod topology. 
This can be easily done using the fact that r,--* t' and the fact that the 
distances between particles in a cluster are independent of the number of 
particles it contains; both facts are provided by Theorem 1.) 
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We next consider the plateau of rl-I/2S2n.(n ) that follows immediately 
the nondecreasing portion considered above; our objective is to show it 
converges (in Skorohod topology) to the portion of ~ whose abscissas lie 
between the points t~ and tg. We have that the height and the length of the 
former are, respectively, H,, and O(n)/2n, and they are independent due to 
Theorem 1. The height and the length of the latter are represented by an 
exponential mean-1 random variable and the random variable t~, which are 
independent. Thus, the height and the length of the former converge to 
those of the latter due to Lemma 4 and the convergence of H,, mentioned 
above. Employing then the independence between these random variables, 
we achieve our objective. 

We then study the nonincreasing portion of n-I/2S2,,.(n) that follows 
immediately the plateau considered in the above paragraph. Its leftmost 
point coincides with the rightmost one of this plateau, but its structure is 
inependent of the preceding portions of (n)-I~S2,,.(n) (due to Theorem 1). 
Reasoning as above for the nondecreasing portion, one can show it 
converges to the portion of ~ whose abscissas lie between tg and tg'. 

Following the nonincreasing portion just considered, there is a valley 
whose length is [2n+a(n)]/2n independent of the preceding portions. 
Reasoning as for the plateau in the paragraph before the previous one, we 
derive its convergence to the portion of ~. between the abscissas tg' and t~. 

Continuing reasoning in this way and "gluing" the portions of the 
processes, we get the final result, though in the Skorohod topology. But 
this leads to convergence in the space of continuous functions since all 
S.(n) and the limit process are continuousY ) I 
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